Referencias

πŸ“š Referencias

  1. Cook, C. R., & Kim, D. J. (1980). Best Sorting Algorithm for Nearly Sorted Lists.
    ACM Digital Library: https://dl.acm.org/doi/10.1145/359024.359026 :contentReferenceoaicite:0
    Semantic Scholar: https://www.semanticscholar.org/paper/Best-sorting-algorithm-for-nearly-sorted-lists-Cook-Kim/86e5cc71d12a48afa3d1f982e4449d66d7790a55

  2. Estivill-Castro, V., & Wood, D. (1992). A survey of adaptive sorting algorithms. ACM Computing Surveys, 24(4), 441–476.
    ACM Digital Library: https://dl.acm.org/doi/10.1145/146370.146381 :contentReferenceoaicite:1
    Semantic Scholar: https://www.semanticscholar.org/paper/A-survey-of-adaptive-sorting-algorithms-Estivill-Castro-Wood/2e92b4f8b5f7e6f4b8d2eae28b8e2a9c0df2ae5a

  3. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to Algorithms (4Βͺ ed.). MIT Press.
    MIT Press: https://mitpress.mit.edu/9780262043242/introduction-to-algorithms/

  4. Pugh, W. (1990). Skip Lists: A Probabilistic Alternative to Balanced Trees. Communications of the ACM, 33(6), 668–676.
    ACM Digital Library: https://dl.acm.org/doi/10.1145/78973.78977 :contentReferenceoaicite:2

  5. Baeza-Yates, R., & Salinger, A. (2004). A fast set intersection algorithm for sorted sequences. En: Combinatorial Pattern Matching (LNCS 4007), pp. 400–409. Springer.
    SpringerLink: https://link.springer.com/chapter/10.1007/978-3-540-24611-2_30

  6. Barbay, J., & Kenyon, C. (2002). Adaptive intersection and t-threshold problems. En: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 390–399. ACM.
    ACM Digital Library: https://dl.acm.org/doi/10.5555/645394.655596
    Semantic Scholar: https://www.semanticscholar.org/paper/Adaptive-intersection-and-t%E2%80%90threshold-problems-Barbay-Kenyon/af4a6c8e5f3bb1e4d1a2e427e8c1bf1a0b3db8c8